Quantum-assisted NMR data processing: enhancing sensitivity and resolution with quantum computing algorithms
DOI:
https://doi.org/10.35335/a79g5q93Keywords:
Data Processing, NMR Spectroscopy, Quantum Computing, Resolution Improvement, Sensitivity EnhancementAbstract
Quantum computing is used to improve NMR spectroscopy sensitivity and resolution. Many scientific fields employ NMR to analyze molecular structures and interactions. Typical NMR data processing algorithms have limitations, especially in recognizing low-abundance compounds and resolving overlapping signals. To solve NMR data processing problems, the proposed research uses quantum algorithms, simulations, and a hybrid quantum-classical approach. Quantum Fourier transform (QFT) enhances sensitivity and quantum phase estimation (QPE) improves resolution. The QFT accelerates data analysis using quantum parallelism to detect low-concentration chemicals. QPEs accurately estimate phases, resolve overlapping peaks, and improve peak assignments. Quantum-assisted NMR data processing improvements are shown numerically. Quantum algorithms improve sensitivity and resolution, allowing delicate signals and correct structural assessments. This study also addresses quantum hardware restrictions, noise, and efficient quantum algorithm design. Quantum-assisted NMR data processing has the potential to transform NMR spectroscopy. Researchers can acquire new accuracy and sensitivity into molecule structures, interactions, and dynamics by linking quantum computers and NMR data analysis. This research advances quantum computing and NMR spectroscopy and lays the groundwork for future studies on quantum-assisted approaches in real-world NMR applications. Quantum-assisted data processing will enable novel molecular characterisation methods and groundbreaking scientific discoveries as quantum technologies advance.
References
Ahmad, S., Mehfuz, S., & Beg, J. (2022). Empirical analysis of security enabled quantum computing for cloud environment. In Quantum and Blockchain for Modern Computing Systems: Vision and Advancements: Quantum and Blockchain Technologies: Current Trends and Challenges (pp. 103–125). Springer.
Altman, E., Brown, K. R., Carleo, G., Carr, L. D., Demler, E., Chin, C., DeMarco, B., Economou, S. E., Eriksson, M. A., & Fu, K.-M. C. (2021). Quantum simulators: Architectures and opportunities. PRX Quantum, 2(1), 17003.
Becker, E. D. (1993). A brief history of nuclear magnetic resonance. Analytical Chemistry, 65(6), 295A-302A.
Benedetti, M., Realpe-Gómez, J., & Perdomo-Ortiz, A. (2018). Quantum-assisted Helmholtz machines: A quantum–classical deep learning framework for industrial datasets in near-term devices. Quantum Science and Technology, 3(3), 34007.
Bifulco, G., Dambruoso, P., Gomez-Paloma, L., & Riccio, R. (2007). Determination of relative configuration in organic compounds by NMR spectroscopy and computational methods. Chemical Reviews, 107(9), 3744–3779.
Bleicher, K. H., Böhm, H.-J., Müller, K., & Alanine, A. I. (2003). Hit and lead generation: beyond high-throughput screening. Nature Reviews Drug Discovery, 2(5), 369–378.
Bonizzoni, C., Tincani, M., Santanni, F., & Affronte, M. (2022). Machine-Learning-Assisted Manipulation and Readout of Molecular Spin Qubits. Physical Review Applied, 18(6), 64074.
Cai, X.-D., Weedbrook, C., Su, Z.-E., Chen, M.-C., Gu, M., Zhu, M.-J., Li, L., Liu, N.-L., Lu, C.-Y., & Pan, J.-W. (2013). Experimental quantum computing to solve systems of linear equations. Physical Review Letters, 110(23), 230501.
Cakmakci, D., Karakaslar, E. O., Ruhland, E., Chenard, M.-P., Proust, F., Piotto, M., Namer, I. J., & Cicek, A. E. (2020). Machine learning assisted intraoperative assessment of brain tumor margins using HRMAS NMR spectroscopy. PLoS Computational Biology, 16(11), e1008184.
Callaghan, P. T. (1993). Principles of nuclear magnetic resonance microscopy. Clarendon press.
Cao, Y., Romero, J., & Aspuru-Guzik, A. (2018). Potential of quantum computing for drug discovery. IBM Journal of Research and Development, 62(6), 1–6.
Cao, Y., Romero, J., Olson, J. P., Degroote, M., Johnson, P. D., Kieferová, M., Kivlichan, I. D., Menke, T., Peropadre, B., & Sawaya, N. P. D. (2019). Quantum chemistry in the age of quantum computing. Chemical Reviews, 119(19), 10856–10915.
Chassé, W., Valentín, J. L., Genesky, G. D., Cohen, C., & Saalwächter, K. (2011). Precise dipolar coupling constant distribution analysis in proton multiple-quantum NMR of elastomers. The Journal of Chemical Physics, 134(4).
Chiron, L., van Agthoven, M. A., Kieffer, B., Rolando, C., & Delsuc, M.-A. (2014). Efficient denoising algorithms for large experimental datasets and their applications in Fourier transform ion cyclotron resonance mass spectrometry. Proceedings of the National Academy of Sciences, 111(4), 1385–1390.
Cloët, I. C., Dietrich, M. R., Arrington, J., Bazavov, A., Bishof, M., Freese, A., Gorshkov, A. V, Grassellino, A., Hafidi, K., & Jacob, Z. (2019). Opportunities for nuclear physics & quantum information science. ArXiv Preprint ArXiv:1903.05453.
Cobas, C. (2020). NMR signal processing, prediction, and structure verification with machine learning techniques. Magnetic Resonance in Chemistry, 58(6), 512–519.
Croasmun, W. R., & Carlson, R. M. K. (1996). Two-dimensional NMR spectroscopy: Applications for chemists and biochemists (Vol. 15). John Wiley & Sons.
Deborde, C., Moing, A., Roch, L., Jacob, D., Rolin, D., & Giraudeau, P. (2017). Plant metabolism as studied by NMR spectroscopy. Progress in Nuclear Magnetic Resonance Spectroscopy, 102, 61–97.
Emwas, A.-H., Roy, R., McKay, R. T., Tenori, L., Saccenti, E., Gowda, G. A. N., Raftery, D., Alahmari, F., Jaremko, L., & Jaremko, M. (2019). NMR spectroscopy for metabolomics research. Metabolites, 9(7), 123.
Galar, M., Fernández, A., Barrenechea, E., Bustince, H., & Herrera, F. (2011). An overview of ensemble methods for binary classifiers in multi-class problems: Experimental study on one-vs-one and one-vs-all schemes. Pattern Recognition, 44(8), 1761–1776.
Gamble, S. (2019). Quantum computing: What it is, why we want it, and how we’re trying to get it. Frontiers of Engineering: Reports on Leading-Edge Engineering from the 2018 Symposium.
Gärttner, M., Bohnet, J. G., Safavi-Naini, A., Wall, M. L., Bollinger, J. J., & Rey, A. M. (2017). Measuring out-of-time-order correlations and multiple quantum spectra in a trapped-ion quantum magnet. Nature Physics, 13(8), 781–786.
Gill, S. S., Kumar, A., Singh, H., Singh, M., Kaur, K., Usman, M., & Buyya, R. (2022). Quantum computing: A taxonomy, systematic review and future directions. Software: Practice and Experience, 52(1), 66–114.
Günther, H. (2013). NMR spectroscopy: basic principles, concepts and applications in chemistry. John Wiley & Sons.
Howarth, A., Ermanis, K., & Goodman, J. M. (2020). DP4-AI automated NMR data analysis: straight from spectrometer to structure. Chemical Science, 11(17), 4351–4359.
Hu, X., & Sarma, S. Das. (2001). Spin-based quantum computation in multielectron quantum dots. Physical Review A, 64(4), 42312.
Imre, S. (2014). Quantum computing and communications–Introduction and challenges. Computers & Electrical Engineering, 40(1), 134–141.
Keselbrener, L., & Akselrod, S. (1996). Selective discrete Fourier transform algorithm for time-frequency analysis: method and application on simulated and cardiovascular signals. IEEE Transactions on Biomedical Engineering, 43(8), 789–802.
Koch, C. P., Boscain, U., Calarco, T., Dirr, G., Filipp, S., Glaser, S. J., Kosloff, R., Montangero, S., Schulte-Herbrüggen, T., & Sugny, D. (2022). Quantum optimal control in quantum technologies. Strategic report on current status, visions and goals for research in Europe. EPJ Quantum Technology, 9(1), 19.
Kotler, S. A., Brender, J. R., Vivekanandan, S., Suzuki, Y., Yamamoto, K., Monette, M., Krishnamoorthy, J., Walsh, P., Cauble, M., & Holl, M. M. B. (2015). High-resolution NMR characterization of low abundance oligomers of amyloid-β without purification. Scientific Reports, 5(1), 11811.
Krishnan, V. V. (2019). Molecular thermodynamics using nuclear magnetic resonance (NMR) spectroscopy. Inventions, 4(1), 13.
Li, J., Vosegaard, T., & Guo, Z. (2017). Applications of nuclear magnetic resonance in lipid analyses: An emerging powerful tool for lipidomics studies. Progress in Lipid Research, 68, 37–56.
Lordi, V., & Nichol, J. M. (2021). Advances and opportunities in materials science for scalable quantum computing. MRS Bulletin, 46, 589–595.
Lovchinsky, I., Sushkov, A. O., Urbach, E., de Leon, N. P., Choi, S., De Greve, K., Evans, R., Gertner, R., Bersin, E., & Müller, C. (2016). Nuclear magnetic resonance detection and spectroscopy of single proteins using quantum logic. Science, 351(6275), 836–841.
Maze, J. R., Stanwix, P. L., Hodges, J. S., Hong, S., Taylor, J. M., Cappellaro, P., Jiang, L., Dutt, M. V. G., Togan, E., & Zibrov, A. S. (2008). Nanoscale magnetic sensing with an individual electronic spin in diamond. Nature, 455(7213), 644–647.
Mobli, M., & Hoch, J. C. (2014). Nonuniform sampling and non-Fourier signal processing methods in multidimensional NMR. Progress in Nuclear Magnetic Resonance Spectroscopy, 83, 21–41.
Nam, Y., Chen, J.-S., Pisenti, N. C., Wright, K., Delaney, C., Maslov, D., Brown, K. R., Allen, S., Amini, J. M., & Apisdorf, J. (2020). Ground-state energy estimation of the water molecule on a trapped-ion quantum computer. Npj Quantum Information, 6(1), 33.
Nielsen, M. A., & Chuang, I. L. (2010). Quantum computation and quantum information. Cambridge university press.
Outeiral, C., Strahm, M., Shi, J., Morris, G. M., Benjamin, S. C., & Deane, C. M. (2021). The prospects of quantum computing in computational molecular biology. Wiley Interdisciplinary Reviews: Computational Molecular Science, 11(1), e1481.
Paudel, H. P., Syamlal, M., Crawford, S. E., Lee, Y.-L., Shugayev, R. A., Lu, P., Ohodnicki, P. R., Mollot, D., & Duan, Y. (2022). Quantum computing and simulations for energy applications: Review and perspective. ACS Engineering Au, 2(3), 151–196.
Peng, B., Li, H., & Peng, X.-X. (2015). Functional metabolomics: from biomarker discovery to metabolome reprogramming. Protein & Cell, 6(9), 628–637.
Perdomo-Ortiz, A., Benedetti, M., Realpe-Gómez, J., & Biswas, R. (2018). Opportunities and challenges for quantum-assisted machine learning in near-term quantum computers. Quantum Science and Technology, 3(3), 30502.
Rietsche, R., Dremel, C., Bosch, S., Steinacker, L., Meckel, M., & Leimeister, J.-M. (2022). Quantum computing. Electronic Markets, 32(4), 2525–2536.
Russell, C., Rahman, A., & Mohammed, A. R. (2013). Application of genomics, proteomics and metabolomics in drug discovery, development and clinic. Therapeutic Delivery, 4(3), 395–413.
Soares, I. P., Rezende, T. F., Silva, R. C., Castro, E. V. R., & Fortes, I. C. P. (2008). Multivariate calibration by variable selection for blends of raw soybean oil/biodiesel from different sources using Fourier transform infrared spectroscopy (FTIR) spectra data. Energy & Fuels, 22(3), 2079–2083.
Tishmack, P. A., Bugay, D. E., & Byrn, S. R. (2003). Solid-state nuclear magnetic resonance spectroscopy-pharmaceutical applications. Journal of Pharmaceutical Sciences, 92(3), 441–474.
Vaara, J. (2007). Theory and computation of nuclear magnetic resonance parameters. Physical Chemistry Chemical Physics, 9(40), 5399–5418.
Vandersypen, L. M. K., & Chuang, I. L. (2005). NMR techniques for quantum control and computation. Reviews of Modern Physics, 76(4), 1037.
Wasielewski, M. R., Forbes, M. D. E., Frank, N. L., Kowalski, K., Scholes, G. D., Yuen-Zhou, J., Baldo, M. A., Freedman, D. E., Goldsmith, R. H., & Goodson III, T. (2020). Exploiting chemistry and molecular systems for quantum information science. Nature Reviews Chemistry, 4(9), 490–504.
Wei, Z., Zhao, J., He, H., Ding, G., Cui, H., & Liu, L. (2021). Future smart battery and management: Advanced sensing from external to embedded multi-dimensional measurement. Journal of Power Sources, 489, 229462.
Wishart, D. S. (2008). Quantitative metabolomics using NMR. TrAC Trends in Analytical Chemistry, 27(3), 228–237.
Zhu, X., Beauregard, G. T., & Wyse, L. L. (2007). Real-time signal estimation from modified short-time Fourier transform magnitude spectra. IEEE Transactions on Audio, Speech, and Language Processing, 15(5), 1645–1653.
Downloads
Published
Issue
Section
License
Copyright (c) 2022 Vaara Bugay Russell, Outeiral Strahm Sushkov, Koch Bohnet Böhm (Author)

This work is licensed under a Creative Commons Attribution 4.0 International License.