Advancements in radiochemistry and nuclear methods of analysis for safer and sustainable applications

Authors

  • Sosuke Han Sanada Nihon University, Japan Author
  • Richard Nichida Shrestha Nihon University, Japan Author

Keywords:

Advancements,, Nuclear methods, Radiochemistry, Safer applications, Sustainable applications

DOI:

https://doi.org/10.35335/v4t2dh66

Abstract

This research investigates radiochemistry and nuclear analysis technologies to make applications safer and more sustainable. A mathematical optimization approach optimizes radiopharmaceutical synthesis parameters for positron emission tomography (PET) imaging to maximize yield and minimize radioactive waste. Optimizing critical parameters improves the efficiency, safety, and sustainability of radiochemistry and nuclear technologies in medical imaging, nuclear energy, and environmental monitoring. The numerical example shows that optimization achieves the study goal. Optimization strategies improve medical imaging by increasing radiopharmaceutical yield and decreasing radioactive waste volume. Real-world implementation requires cost-effectiveness, safety restrictions, and numerous synthesis factors. Researchers, policymakers, and industry professionals must collaborate to enhance human and environmental welfare, according to the report. In conclusion, this research advances radiochemistry and nuclear procedures for safer and more sustainable applications, mitigating hazards and environmental effect and ensuring a safer and more sustainable future for nuclear technology.

References

Aydin, S., Friedrichsen, P. M., Boz, Y., & Hanuscin, D. L. (2014). Examination of the topic-specific nature of pedagogical content knowledge in teaching electrochemical cells and nuclear reactions. Chemistry Education Research and Practice, 15(4), 658–674.

Banerjee, S., Basu, S., Baheti, A. D., Kulkarni, S., Rangarajan, V., Nayak, P., Murthy, V., Kumar, A., Laskar, S. G., & Agarwal, J. P. (2022). Radiation and radioisotopes for human healthcare applications. Curr. Sci, 123, 1–10.

Banhart, J. (2008). Advanced tomographic methods in materials research and engineering (Vol. 66). OUP Oxford.

Banister, S., Roeda, D., Dollé, F., & Kassiou, M. (2010). Fluorine-18 chemistry for PET: a concise introduction. Current Radiopharmaceuticals, 3(2), 68–80.

Bodansky, D. (2007). Nuclear energy: principles, practices, and prospects. Springer Science & Business Media.

Califano, S., & Califano, S. (2012). Radioactivity. Pathways to Modern Chemical Physics, 135–166.

Calligaro, T., Banas, A., Banas, K., Radović, I. B., Brajković, M., Chiari, M., Forss, A.-M., Hajdas, I., Krmpotić, M., & Mazzinghi, A. (2022). Emerging nuclear methods for historical painting authentication: AMS-14C dating, MeV-SIMS and O-PTIR imaging, global IBA, differential-PIXE and full-field PIXE mapping. Forensic Science International, 336, 111327.

Cebulska-Wasilewska, A., Bilska-Wilkosz, A., & Laidler, P. (2012). Science as a public duty: following the ideas and work of Maria Skłodowska-Curie. Przegląd Lekarski, 69(2).

Chakravarty, R., & Dash, A. (2013). Role of nanoporous materials in radiochemical separations for biomedical applications. Journal of Nanoscience and Nanotechnology, 13(4), 2431–2450.

Chen, C., Chai, Z., & Gao, Y. (2010). Nuclear analytical techniques for metallomics and metalloproteomics. Royal Society of Chemistry.

Cox, M., & Hunter, J. (2005). Forensic archaeology: advances in theory and practice. Routledge.

Das, D. D., Sharma, N., & Chawla, P. A. (2023). Neutron activation analysis: An excellent nondestructive analytical technique for trace metal analysis. Critical Reviews in Analytical Chemistry, 1–17.

Deri, M. A., Zeglis, B. M., Francesconi, L. C., & Lewis, J. S. (2013). PET imaging with 89Zr: from radiochemistry to the clinic. Nuclear Medicine and Biology, 40(1), 3–14.

El-Taher, A. (2018). Nuclear analytical techniques for detection of rare earth elements. Journal of Radiation and Nuclear Applications, 3(1), 53–64.

Heilbron, J. L. (2003). The Oxford companion to the history of modern science. Oxford University Press.

Hix, W. R., & Thielemann, F.-K. (1999). Computational methods for nucleosynthesis and nuclear energy generation. Journal of Computational and Applied Mathematics, 109(1–2), 321–351.

Hussein, A. E., Senabulya, N., Ma, Y., Streeter, M. J. V, Kettle, B., Dann, S. J. D., Albert, F., Bourgeois, N., Cipiccia, S., & Cole, J. M. (2019). Laser-wakefield accelerators for high-resolution X-ray imaging of complex microstructures. Scientific Reports, 9(1), 3249.

Karim, R., Karim, M. E., Muhammad-Sukki, F., Abu-Bakar, S. H., Bani, N. A., Munir, A. B., Kabir, A. I., Ardila-Rey, J. A., & Mas’ ud, A. A. (2018). Nuclear energy development in Bangladesh: A study of opportunities and challenges. Energies, 11(7), 1672.

Kartal, M. T., Samour, A., Adebayo, T. S., & Depren, S. K. (2023). Do nuclear energy and renewable energy surge environmental quality in the United States? New insights from novel bootstrap Fourier Granger causality in quantiles approach. Progress in Nuclear Energy, 155, 104509.

Katoh, Y., & Snead, L. L. (2019). Silicon carbide and its composites for nuclear applications–Historical overview. Journal of Nuclear Materials, 526, 151849.

Khankhasayev, M., & Komarov, A. V. (1999). R&D Needs of Chemical Separation Technologies for Nuclear Wastes from the Perspective of Federal Governmental Programs of Russia. In Chemical Separation Technologies and Related Methods of Nuclear Waste Management: Applications, Problems, and Research Needs (pp. 169–186). Springer.

L’Annunziata, M. F. (2016). Radioactivity: introduction and history, from the quantum to quarks. Elsevier.

Lieser, K. H. (2008). Nuclear and radiochemistry: fundamentals and applications. John Wiley & Sons.

Lyon, W. S. (1972). NUCLEAR AND X-RAY TECHNIQUES. Oak Ridge National Lab.(ORNL), Oak Ridge, TN (United States).

Meier-Augenstein, W. (2011). Stable isotope forensics: an introduction to the forensic application of stable isotope analysis (Vol. 3). John Wiley & Sons.

Neeb, K.-H. (2011). The radiochemistry of nuclear power plants with light water reactors. Walter de Gruyter.

Podo, F., Sardanelli, F., Iorio, E., Canese, R., Carpinelli, G., Fausto, A., & Canevari, S. (2007). Abnormal choline phospholipid metabolism in breast and ovary cancer: molecular bases for noninvasive imaging approaches. Current Medical Imaging, 3(2), 123–137.

Sai, K. K. S., Zachar, Z., Bingham, P. M., & Mintz, A. (2017). Metabolic PET imaging in oncology. American Journal of Roentgenology, 209(2), 270–276.

Sgouros, G., Bodei, L., McDevitt, M. R., & Nedrow, J. R. (2020). Radiopharmaceutical therapy in cancer: clinical advances and challenges. Nature Reviews Drug Discovery, 19(9), 589–608.

Shideler, R. W., Langrebe, A. R., McClendon, L., Thompson, J., Keenan, R. G., & Marcus, J. H. (1964). Radiochemical Analysis: Activation Analysis, Instrumentation Radiation Techniques, and Radio Isotope Techniques, July 1963 to June 1964 (Vol. 248). US Government Printing Office.

Srivastava, S. C. (2011). Paving the way to personalized medicine: production of some theragnostic radionuclides at Brookhaven National Laboratory.

Wagner Jr, H. N. (1998). A brief history of positron emission tomography (PET). Seminars in Nuclear Medicine, 28(3), 213–220.

Zou, C., Zhao, Q., Zhang, G., & Xiong, B. (2016). Energy revolution: From a fossil energy era to a new energy era. Natural Gas Industry B, 3(1), 1–11.

Downloads

Published

2023-06-30

How to Cite

Advancements in radiochemistry and nuclear methods of analysis for safer and sustainable applications. (2023). Vertex, 12(2), 51-59. https://doi.org/10.35335/v4t2dh66

Similar Articles

1-10 of 26

You may also start an advanced similarity search for this article.